Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish

Abstract

The small size and optical transparence of zebrafish embryos and larvae greatly facilitate modern intravital microscopic phenotyping of these experimentally tractable laboratory animals. Neither the experimentally derived dose-response relationships for chemicals commonly used in the mounting of live fish larvae, nor their effect on the stress of the animal, are currently available in the research literature. This is particularly problematic for IACUCs attempting to maintain the highest ethical standards of animal care in the face of a recent spate in investigator-initiated requests to use embryonic zebrafish as experimental models. The authors address this issue by describing the dose-dependent efficacy of several commonly used chemical mounting treatments and their effect on one stress parameter, embryo heart rate. The results of this study empirically define, for the first time, effective, minimally stressful treatments for immobilization and in vivo visualization during early zebrafish development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Unanesthetized zebrafish fH during development.
Figure 4: Effect of agarose mounting on the mean ±1 S.E. fH of 6-dpf zebrafish embryos.

Similar content being viewed by others

References

  1. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291(5813), 293–296 (1981).

    Article  Google Scholar 

  2. Stern, H.M. & Zon, L.I. Cancer genetics and drug discovery in the zebrafish. Nat. Rev. Cancer 3(7), 533–539 (2003).

    Article  Google Scholar 

  3. Berghmans, S. et al. Making waves in cancer research: new models in the zebrafish. Biotechniques 39(2), 227–237 (2005).

    Article  Google Scholar 

  4. Argenton, F., Zecchin, E. & Bortolussi, M. Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech. Dev. 87(1–2), 217–221 (1999).

    Article  Google Scholar 

  5. Kim, H.J. et al. Genetic analysis of early endocrine pancreas formation in zebrafish. Mol. Endocrinol. 20(1), 194–203 (2006).

    Article  Google Scholar 

  6. Sun, Z.X. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131(16), 4085–4093 (2004).

    Article  Google Scholar 

  7. Kramer-Zucker, A.G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132(8), 1907–1921 (2005).

    Article  Google Scholar 

  8. Sehnert, A.J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Gen. 31(1), 106–110 (2002).

    Article  Google Scholar 

  9. Armstrong, E.J. & Bischoff, J. Heart valve development: endothelial cell signaling and differentiation. Circ. Res. 95(5), 459–470 (2004).

    Article  Google Scholar 

  10. Bassett, D. & Currie, P.D. Identification of a zebrafish model of muscular dystrophy. Clin. Exp. Pharmacol. Physiol. 31(8), 537–540 (2004).

    Article  Google Scholar 

  11. Etard, C. et al. Mutation in the delta-subunit of the nAChR suppresses the muscle defects caused by lack of dystrophin. Dev. Dyn. 234(4), 1016–1025 (2005).

    Article  Google Scholar 

  12. Darland, T. & Dowling, J.E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Nat. Acad. Sci. USA 98(20), 11691–11696 (2001).

    Article  Google Scholar 

  13. Bilotta, J., Barnett, J.A., Hancock, L. & Saszik, S. Ethanol exposure alters zebrafish development: a novel model for fetal alcohol syndrome. Neurotoxicol. Teratol. 26(6), 737–743 (2004).

    Article  Google Scholar 

  14. Hove, J.R. In vivo biofluids dynamic imaging in the developing zebrafish. Birth Defects Res. C Embryo Today 72(3), 277–289 (2004).

    Article  Google Scholar 

  15. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). 4th ed. (University of Oregon Press, Eugene, OR, 2000).

    Google Scholar 

  16. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic-development of the zebrafish. Dev. Dyn. 203(3), 253–310 (1995).

    Article  Google Scholar 

  17. Wagner, G.N., Singer, T.D. & McKinley, R.S. The ability of clove oil and MS-222 to minimize handling stress in rainbow trout (Oncorhynchus mykiss Walbaum). Aquacult. Res. 34(13), 1139–1146 (2003).

    Article  Google Scholar 

  18. Pickering, A.D. Stress and Fish (Academic Press, London, UK, 1981).

    Google Scholar 

  19. Karlsson, J., von Hofsten, J. & Olsson, P.E. Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar. Biotechnol (NY). 3(6), 522–527 (2001).

    Article  Google Scholar 

  20. Lesseps, R.J. & Gast, E.A. Proteolytic dechorionation of annual fish embryos. Anat. Rec. 187(1), 125–128 (1977).

    Article  Google Scholar 

  21. Melby, A.E., Warga, R.M. & Kimmel, C.B. Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122(7), 2225–2237 (1996).

    Google Scholar 

  22. Hove, J.R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919), 172–177 (2003).

    Article  Google Scholar 

  23. Forouhar, A.S. et al. Electrocardiographic characterization of embryonic zebrafish. Proceedings of the 26th Annual International Conference of the IEEE-EMBS, 3615–3617 (2004).

  24. Wallenstein, S., Zucker, C.L. & Fleiss, J.L. Some statistical-methods useful in circulation research. Circ. Res. 47(1), 1–9 (1980).

    Article  Google Scholar 

  25. Barton, B.A. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42(3), 517–525 (2002).

    Article  Google Scholar 

  26. Wedemeyer, G. Some physiological consequences of handling stress in the juvenile coho salmon and steelhead trout. J. Fish. Res. Bd. Can. 29(12), 178–183 (1972).

    Google Scholar 

  27. Lupes, S.C., Davis, M.W., Olla, B.L. & Schreck, C.B. Capture-related stressors impair immune system function in sablefish. Trans. Am. Fish. Soc. 135(1), 129–138 (2006).

    Article  Google Scholar 

  28. Iwama, G.K., Thomas, P.T., Forsyth, R.H. & Vijayan, M.M. Heat shock protein expression in fish. Rev. Fish Biol. Fisheries 8(1), 35–56 (1998).

    Article  Google Scholar 

  29. Soimasuo, M.R., Werner, I., Villalobos, A. & Hinton, D.E. Cytochrome p450 1A- and stress protein-induction in early life stages of medaka (Oryzias latipes) exposed to trichloroethylene (TCE) soot and different fractions. Biomarkers 6(2), 133–145 (2001).

    Article  Google Scholar 

  30. Cara, J.B., Aluru, N., Moyano, F.J. & Vijayan, M.M. Food-deprivation induces hsp70 and hsp90 protein expression in larval gilthead sea bream and rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 142(4), 426–431 (2005).

    Article  Google Scholar 

  31. Barry, T.P., Malison, J.A., Held, J.A. & Parrish, J.J. Ontogeny of the cortisol stress response in yellow perch (Perca flavescens). Gen. Comp. Endocrinol. 97(1), 57–65 (1995).

    Article  Google Scholar 

  32. Jentoft, S., Held, J.A., Malison, J.A. & Barry, T.P. Ontogeny of the cortisol stress response in larval rainbow trout. Fish Physiol. Biochem. 26(4), 371–378 (2002).

    Article  Google Scholar 

  33. McCormick, M.I. & Nechaev, I.V. Influence of cortisol on developmental rhythms during embryogenesis in a tropical damselfish. J. Exp. Zool. 293(5), 456–466 (2002).

    Article  Google Scholar 

  34. Koven, W., et al. The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling stress or daily salinity change. Aquaculture 228(1–4), 307–320 (2003).

    Article  Google Scholar 

  35. Iwama, G.K., Afonso, L.O., Todgham, A., Ackerman, P. & Nakano, K. Are hsps suitable for indicating stressed states in fish? J. Exp. Biol. 207(1), 15–19 (2004).

    Article  Google Scholar 

  36. Hallare, A.V., Pagulayan, R., Lacdan, N., Kohler, H.R. & Triebskorn, R. Assessing water quality in a tropical lake using biomarkers in zebrafish embryos: developmental toxicity and stress protein responses. Env. Monitor. Assess. 104(1–3), 171–187 (2005).

    Article  Google Scholar 

  37. Mao, L. & Shelden, E.A. Developmentally regulated gene expression of the small heat shock protein Hsp27 in zebrafish embryos. Gene Expr. Patterns 6(2), 127–133 (2006).

    Article  Google Scholar 

  38. Yabu, T., Todoriki, S. & Yamashita, M. Stress-induced apoptosis by heat shock, UV and gamma-ray irradiation in zebrafish embryos detected by increased caspase activity and whole-mount TUNEL staining. Fish. Sci. 67(2), 333–340 (2001).

    Article  Google Scholar 

  39. Wiegand, C., Pflugmacher, S., Oberemm, A. & Steinberg, C. Activity development of selected detoxication enzymes during ontogenesis of the zebrafish (Danio rerio). Int. Rev. Hydrobiol. 85(4), 413–422 (2000).

    Article  Google Scholar 

  40. Milan, D.J., Peterson, T.A., Ruskin, J.N., Peterson, R.T. & MacRae, C.A. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107(10), 1355–1358 (2003).

    Article  Google Scholar 

  41. Hallare, A.V., Schirling, M., Luckenbach, T., Kohler, H.R., & Triebskorn, R. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J. Thermal Biol. 30(1), 7–17 (2005).

    Article  Google Scholar 

  42. Hassoun, E., Kariya, C., & Williams, F.E. Dichloroacetate-induced developmental toxicity and production of reactive oxygen species in zebrafish embryos. J. Biochem. Mol. Toxicol. 19(1), 52–58 (2005).

    Article  Google Scholar 

  43. Burns, C.G. et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat. Chem. Biol. 1(5), 263–264.

  44. Stainier, D.Y. & Fishman, M.C. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol. 153, 91–101 (1992).

    Article  CAS  Google Scholar 

  45. Joseph, E.M. Zebrafish IRX1b in the embryonic cardiac ventricle. Dev. Dyn. 231(4), 720–726 (2004).

    Article  Google Scholar 

  46. Barrionuevo, W.R. & Burggren, W.W. O-2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O-2. Am. J. Physiol. Reg. Integr. Comp. Physiol. 276(2), R505–R513 (1999).

    Article  Google Scholar 

  47. Schwerte, T., Voigt, S., & Pelster, B. Epigenetic variations in early cardiovascular performance and hematopoiesis can be explained by maternal clutch effects in developing zebrafish (Danio rerio). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 141(2), 200–209 (2005).

    Article  Google Scholar 

  48. Ross, L.G. & Ross, B.R. Anaesthetic and Sedative Techniques for Aquatic Animals (Blackwell Science, Oxford, UK, 1999).

    Google Scholar 

  49. Ege, R. & Krogh, A. On the relation between the temperature and the respiratory exchange in fishes. Int. Rev. Gesamten. Hydrobiol. Hydrogr. 7, 48–55 (1914).

    Article  Google Scholar 

  50. McFarland, W.N. The use of anesthetics for the handling and the transport of fishes. Calif. Fish Game 46, 407–431 (1960).

    CAS  Google Scholar 

  51. McFarland, W.N. & Klontz, G.W. Anesthesia in fishes. Fed. Proc. 28(4), 1535–1540 (1969).

    Google Scholar 

  52. Mazeaud, M.M., Mazeaud, F., & Donaldson, E.M. Primary and secondary effects of stress in fish: some new data with a general review. Tr. Am. Fish. Soc. 106(3), 201–212 (1977).

    Article  Google Scholar 

  53. Strange, R.J. & Schreck, C.B. Anesthetic and handling stress on survival and cortisol concentration of yearling Chinook salmon (Oncorhynchus tshawytscha). J. Fish. Res. Bd. Can. 35, 345–349 (1978).

    Article  CAS  Google Scholar 

  54. Small, B.C. & Chatakondi, N. Routine measures of stress are reduced in mature channel catfish during and after AQUI-S anesthesia and recovery. N. Am. J. Aquacult. 67(1), 72–78 (2005).

    Article  Google Scholar 

  55. Randall, D.J. Effect of an anaesthetic on the heart and respiration of a teleost fish. Nature 195, 506 (1962).

    Article  CAS  Google Scholar 

  56. Fredricks, K.T., Gingerich, W.H. & Fater, D.C. Comparative cardiovascular effects of four fishery anesthetics in spinally transected rainbow trout, Oncorhynchus mykiss. Comp. Biochem. Physiol. 104C(3), 477–483 (1993).

    Google Scholar 

  57. Smith, D.G. Sympathetic cardiac stimulation in Bufo marinus under MS-222 anesthesia. Am. J. Physiol. 226(2), 367–370 (1974).

    Article  Google Scholar 

  58. Howe, R.S., Burggren, W.W. & Warburton, S.J. Fixed patterns of bradycardia during late embryonic-development in domestic-fowl with c-locus mutations. Am. J. Physiol. Heart Circ. Physiol. 268(1), H56–H60 (1995).

    Article  Google Scholar 

  59. Rios, M. et al. Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. J. Neurosci. 19(9), 3519–3526 (1999).

    Article  Google Scholar 

  60. Pelster, B. & Burggren, W.W. Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ. Res. 79(2), 358–362 (1996).

    Article  Google Scholar 

  61. Wells, P. & Pinder, A. The respiratory development of Atlantic salmon. I. Morphometry of gills, yolk sac and body surface. J. Exp. Biol. 199(12), 2725–2736 (1996).

    Google Scholar 

  62. Wells, P. & Pinder, A. The respiratory development of Atlantic salmon. II. Partitioning of oxygen uptake among gills, yolk sac and body surface. J. Exp. Biol. 199(12), 2737–2744 (1996).

    Google Scholar 

  63. Rombough, P.J. Piscine Cardiovascular Development (University of Cambridge Press, New York, 1997).

    Google Scholar 

  64. Mirkovic, T. & Rombough, P.J. The effect of body mass and temperature on the heart rate, stroke volume, and cardiac output of larvae of the rainbow trout, Oncorhynchus mykiss. Physiol. Zool. 71(2), 191–197 (1998).

    Article  Google Scholar 

  65. Incardona, J.P., Collier, T.K. & Scholz, N.L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 196(2), 191–205 (2004).

    Article  Google Scholar 

  66. Hsieh, D.J. & Liao, C.F. Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br. J. Pharmacol. 137(6), 782–792 (2002).

    Article  Google Scholar 

  67. Baker, K., Warren, K.S., Yellen, G. & Fishman, M.C. Defective “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc. Natl. Acad. Sci. USA 94(9), 4554–4559 (1997).

    Article  Google Scholar 

  68. Jacob, E., Drexel, M., Schwerte, T. & Pelster, B. Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283(4), R911–R917 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NSF (#IBN-0311862) and AHA (#0555236B) to JRH. We thank the Zebrafish and Medaka Model Organisms Laboratory at UC-GRI for supplying the zebrafish used in these studies and Lisa Martin of the Cincinnati Children's Hospital Bioinformatics Department for her valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay R Hove.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, M., Gilday, S. & Hove, J. Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish. Lab Anim 35, 41–47 (2006). https://doi.org/10.1038/laban1006-41

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban1006-41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing